2023ÄêºÍг·ÖÎö×êÑлᣨÉϺ££©Ë³Àû½øÐÐ

°ä²¼¹¦·ò£º2023-10-18Ͷ¸å£º¹¨»ÝÓ¢ ²¿ÃÅ£ºÀíѧԺ ä¯ÀÀ´ÎÊý£º

20231017-81.jpg

¡°2023ÄêºÍг·ÖÎö×êÑлᣨÉϺ££©¡±ÓÚ2023Äê10ÔÂ14-15ÈÕÔÚУ±¾²¿GJ303A˳ÀûÕÙ¿ª ¡£±¾´Î»áÒéÖ¼ÔÚΪ¹úÄÚºÍг·ÖÎöѧÕßÌṩһ¸öѧÊõ»¥»»Æ½Ì¨£¬ÍƽøºÍг·ÖÎö¼°ÆäÓйØÁìÓòµÄ·¢Õ¹£¬¼ÓÇ¿¹úÄÚ±íͬҵ֮¼äµÄ»¥¶©»¥»»ÓëºÏ×÷ ¡£À´×ÔÃÀ¹úÍþ˹¿µÐÁ´óѧÃܶûÎÖ»ù·ÖУ¡¢¸´µ©´óѧ¡¢±±¾©Ê¦·¶´óѧ¡¢ÖÐɽ´óѧ¡¢Õã½­´óѧ¡¢ÏÃÃÅ´óѧ¡¢»ªÖÐʦ·¶´óѧÌõÈ21Ëù¸ßУµÄ40ÓàÃûºÍг·ÖÎö¼°ÆäÓйØÁìÓòµÄ³ÛÃûר¼Ò²ÎÓëÁ˱¾´Î×êÑлᣬ´ó»á¹²ÓÐ14¸ö»ã±¨ ¡£»áÒéÓÉCA88ÀíѧԺÊýѧϵÖ÷°ì ¡£

»áÒéÓÚ14ÈÕÉÏÎç8:30¿ªÄ»£¬CA88ÀíѧԺµ³Î¯Êé¼ÇÊ¢Íò³É½ÌÊÚ´ú±íѧԺÖÂÓ­½Ó´Ç£¬½éÉÜÁËCA88µÄ·¢Õ¹¹ý³Ì¡¢ÀíѧԺµÄ¸ù»ùÇé¿öºÍÊýѧѧ¿Æ½üЩÄêµÄ·¢Õ¹Çé¿ö ¡£±±¾©Ê¦·¶´óѧ¶¡Ó½ÌÊÚºÍÃÀ¹úÍþ˹¿µÐÁ´óѧÃܶûÎÖ»ù·ÖУ·¶´óɽ½ÌÊÚ×÷Ϊ¼Î±öÖ´Ç ¡£ÀíѧԺÊýѧϵµ³×ÜÖ§Êé¼ÇÕÔ·¢ÓѽÌÊÚÖ÷³Ö¿ªÄ»Ê½ ¡£

20231017-82.jpg

14ÈÕÉÏÎ磬ÃÀ¹úÍþ˹¿µÐÁ´óѧÃܶûÎÖ»ù·ÖУ·¶´óɽ½ÌÊÚ×÷ÁËÌâΪ¡°Estimates of a maximal oscillatory integral on compact manifolds¡±µÄ»ã±¨£»ÏÃÃÅ´óѧÎé»ðÐܽÌÊÚ×÷ÁËÌâΪ¡°From Fourier expansions to rough singular integrals¡±µÄ»ã±¨; ±±¾©Ê¦·¶´óѧѦÇìÓª½ÌÊÚ×÷ÁËÌâΪ¡°´Ö²ÚºËËã×ÓµÄÈõ¼«ÏÞÐÐΪÎÊÌâºÍ¶þ¸ö¿Ì»­¡±µÄ»ã±¨ ¡£

20231017-83.jpg

14ÈÕÏÂÎ磬»ªÖÐʦ·¶´óѧҢÓ×»ª½ÌÊÚ×÷ÁËÌâΪ¡°On the Lp bounds of Fourth order wave operators on R^3¡±µÄ»ã±¨£»ÏæÌ¶´óѧÁú˳³±½ÌÊÚ×÷ÁËÌâΪ¡°On the estimate of operator for 0<p<infty¡±µÄ»ã±¨£»»ªÖÐʦ·¶´óѧµËÇåȪ¸±½ÌÊÚ×÷ÁËÌâΪ¡°The modified scattering for cubic NLS with double-well potential in dimension one¡±µÄ»ã±¨£»±±¾©ÁÖÒµ´óѧÕ¾ê½ÌÔ±×÷ÁËÌâΪ¡°Riesz transforms associated with the Neuman Laplacian¡±µÄ»ã±¨ ¡£

20231017-84.jpg

15ÈÕÉÏÎ磬ÉϺ£Ê¦·¶´óѧÀîÖп­½ÌÊÚ×÷ÁËÌâΪ¡°Operators on the Bergman spaces associated with a class of generalized analytic functions¡±µÄ»ã±¨£»ÖÐɽ´óѧ³ÂÏéºê¸±½ÌÊÚ×÷ÁËÌâΪ¡°Some spacetime estimates for the semiperiodic Schrodinger equation¡±µÄ»ã±¨£»¼ÎÐËѧԺÀ¶É­»ª½ÌÊÚ×÷ÁËÌâΪ¡°ÆÚȨ¶¨¼ÛÖеÄFourier²½Ö衱µÄ»ã±¨ ¡£

20231017-85.jpg

15ÈÕÏÂÎ磬Õã½­´óѧÍõÃνÌÊÚ×÷ÁËÌâΪ¡°The rate of convergence on Schrodinger operator¡±µÄ»ã±¨£»¸´µ©´óѧºØÍ¼»­¸±½ÌÊÚ×÷ÁËÌâΪ¡°On multilinear multipliers¡±µÄѧÊõ»ã±¨£»Õ㽭ʦ·¶´óѧÕÔ¿¡Ñà½ÌÔ±×÷ÁËÌâΪ¡°Hardy space estimate of the maximal wave operator¡±µÄ»ã±¨£»CA88Ïî³Ð껲©Ê¿×÷ÁËÌâΪ¡°Sharp constants for fractional Hardy-Littlewood maximal operators on finite graphs¡±µÄ»ã±¨ ¡£

20231017-86.jpg

Õâ´Î»áÒéµÄ»ã±¨ÄÚÈݽÔΪºÍг·ÖÎö¼°ÆäÓйØÁìÓòÖеÄÒ»Ð©Ç°ÑØÎÊÌâÒÔ¼°·¢Õ¹Ç÷Ïò£¬Óë»áר¼Ò¡¢Ñ§Õß¾ÍÆäÖеÄÎÊÌâ·¢Õ¹»áÉÌÈÈÁÒ£¬Ñ§Êõ·ÕΧŨÃÜ£¬ÊµÏÖÁËÕâ´Î»áÒéÍÆ½øÑ§Êõ»¥»»¡¢°Ù¼ÒÕùÃùµÄ×ÚÖ¼ ¡£Õâ´Î»áÒéµÄ˳ÀûÕÙ¿ª¶ÔÓÚ¼ÓÇ¿ºÍг·ÖÎö¼°ÀûÓ÷½ÃæµÄѧÊõ»¥»»ÓëºÏ×÷Æðµ½ÁË»ý¼«µÄ×÷Óã¬Í¬Ê±Ò²ÌáÉýÁËCA88Êýѧѧ¿ÆµÄÓ°ÏìÁ¦ ¡£

¡¾ÍøÕ¾µØÍ¼¡¿