É¢²¼ÓÐÏÞÔª¸´ÐÎ

2025.10.09

Ͷ¸å£ºÉÛ·Ü·Ò²¿ÃÅ£ºÀíѧԺä¯ÀÀ´ÎÊý£º

»î¶¯ÐÅÏ¢

»ã±¨±êÌ⣺Distributional Finite Element Complexes£¨É¢²¼ÓÐÏÞÔª¸´ÐΣ©

»ã±¨ÈË (Speaker)£º »ÆÑ§º£ ½ÌÊÚ£¨ÉϺ£²Æ¾­´óѧ£©

»ã±¨¹¦·ò (Time)£º2025Äê10ÔÂ21ÈÕ(Öܶþ) 14£º00

»ã±¨µØÖ· (Place)£ºÐ£±¾²¿GJ303

Ô¼ÇëÈË(Inviter)£ºÁõ¶«½Ü

Ö÷°ì²¿ÃÅ£ºÀíѧԺÊýѧϵ

»ã±¨ÌáÒª£º We begin by reviewing recent advances in finite element complexes, which motivates the distributional finite element complexes. We then turn to the construction and applications of distributional finite element complexes, focusing in particular on distributional finite element div div complexes, curl div complexes and weakly conformal curl div complexes. Finally, these distributional finite element complexes are applied to solve the biharmonic equation, the pseudostress-velocity-pressure formulation of the Stokes equation, and the stress-velocity-pressure formulation of the Stokes equation. The distributional finite element methods of the Stokes equation are divergence-free.

¡¾ÍøÕ¾µØÍ¼¡¿