Èýάȫ¿Õ¼ä´øÓÐCouetteÁ÷µÄKeller-Segel·½³Ì½âµÄÕûÌå´æÔÚÐÔ

2025.10.30

Ͷ¸å£ºÉÛ·Ü·Ò²¿ÃÅ£ºÀíѧԺä¯ÀÀ´ÎÊý£º

»î¶¯ÐÅÏ¢

»ã±¨±êÌâ (Title)£º Global solution of 3-D Keller-Segel model with Couette flow in whole space

£¨Èýάȫ¿Õ¼ä´øÓÐCouetteÁ÷µÄKeller-Segel·½³Ì½âµÄÕûÌå´æÔÚÐÔ£©

»ã±¨ÈË (Speaker)£º Íõά¿Ë½ÌÊÚ£¨ÉϺ£½»Í¨´óѧ£©

»ã±¨¹¦·ò (Time)£º2025Äê11ÔÂ7ÈÕ£¨ÖÜÎ壩14:00

»ã±¨µØÖ· (Place)£ºÐ£±¾²¿GJ303

Ô¼ÇëÈË(Inviter)£ºÍõÓî³Î

Ö÷°ì²¿ÃÅ£ºÀíѧԺÊýѧϵ

»ã±¨ÌáÒª£ºWe introduce both parabolic-elliptic Keller-Segel model and parabolic-parabolic Keller-Segel model in the background of a Couette flow with spatial variables in R^3. It is proved that for both parabolic-elliptic and parabolic-parabolic cases, a Couette flow with a sufficiently large amplitude prevents the blow-up of solutions. Here, we apply Green¡¯s function method to capture the suppression of blow-up and prove the global existence of the solutions.

¡¾ÍøÕ¾µØÍ¼¡¿